Worksheet ∞

Name:

Score:

1 Topics

- 1. For each topic, explain: what is it? how do you find it or do it? what does it mean? What is its use and what does it do? Give examples.
 - row echelon form and reduced row echelon form ((R)REF)
 - How to solve a system of linear equations. When is a linear system of equations consistent or inconsistent?
 - linear combinations
 - the span $\text{Span}(v_1, \ldots, v_p)$ of a set of vectors (and how to find a basis for it)
 - when is a vector \vec{b} in the span Span (v_1, \ldots, v_p) of some other vectors?
 - When does a set of vectors $\{v_1, \ldots, v_p\}$ span all of \mathbb{R}^n ? When is it linearly independent? How do you check and what does it mean?
 - linear functions
 - one to one/onto/isomorphism. How to check if a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is one of them?
 - The matrix of a linear map $f : \mathbb{R}^n \to \mathbb{R}^m$. Give examples, such as rotation, projection, the identity matrix, etc. Draw pictures.
 - matrix multiplication, in particular multiplying a vector by a matrix and composition of linear functions
 - subspaces
 - bases
 - the null space, column space of a matrix A. (and how to find bases for them)
 - inverses (general formula and the 2x2 case). How to use A^{-1} to solve $A\vec{x} = \vec{b}$. When is a matrix invertible?
 - determinants (general formula and the 2x2 case)
 - Change of basis on \mathbb{R}^n .
 - General vector spaces V. Give examples: $\mathbb{P}_2, \mathbb{P}_n, \mathbb{P}$, continuous/differentiable functions $f : \mathbb{R} \to \mathbb{R}$, the vector space of all 3x2 matrices, etc.
 - the coordinates of a vector \vec{v} in V in a basis B for V.
 - The matrix of a linear map $f: V \to W$ between general vector spaces. (need to choose bases for V and W) Give examples, such as the derivative, integral, or indefinite integral of the vector space of polynomials
 - eigenvalues and eigenvectors

- diagonalizing matrices
- Matrix differential equations $\vec{x}'(t) = A\vec{x}(t)$ and initial value problems where $\vec{x}(0)$ is given
- Complex numbers \mathbb{C} and complex eigenvalues/vectors
- The dot product
- The length of a vector \vec{u} and the angle between two vectors \vec{u}, \vec{v} in \mathbb{R}^n .
- orthogonal and orthonormal sets $\{v_1, \ldots, v_p\}$ of vectors
- The orthogonal complement W^{\perp} of a subspace W of \mathbb{R}^n . How to find a basis for it? $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^T)$. (This and least squares were our only uses of the transpose)
- the Gram Schmidt process
- Least squares solutions to $A\vec{x} = \vec{b}$. (multiply by A^T : $A^T A\vec{x} = A^T \vec{b}$.)
- Anything I forgot?

Some problems:

2. Find a basis of solutions for the Matrix differential equation

$$\begin{aligned} x_1' &= 2x_1 - 2x_2 \\ x_2' &= 4x_1 - 4x_2 \\ \end{aligned} \begin{bmatrix} 2 & -2 \\ 4 & -4 \end{bmatrix}$$

Eigenvalues and vectors:

$$0: \begin{bmatrix} -1\\ -1 \end{bmatrix} \qquad -2: \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

3. Find the angle between the two vectors. Find the length of each vector.

$$\begin{bmatrix} 13\\-2 \end{bmatrix}, \begin{bmatrix} 2\\13 \end{bmatrix}$$

$$\begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} \sqrt{6} + \sqrt{2}\\\sqrt{6} - \sqrt{2} \end{bmatrix}$$

$$\begin{bmatrix} 3\\0\\-2 \end{bmatrix}, \begin{bmatrix} 0\\-13\\0 \end{bmatrix}$$

4. Is the vector \vec{b} in the span of the other vectors?

.

•

$$\vec{b} = \begin{bmatrix} -22\\5\\-5 \end{bmatrix}$$
$$\begin{pmatrix} -6\\1\\-1 \end{bmatrix} \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \begin{bmatrix} 10\\1\\-1 \end{bmatrix}$$

The vector is in the span of the other vectors.

1	0	-3	3]
0	1	-4	-2
1 0 0	0	0	0

$$\vec{b} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$$
$$\begin{bmatrix} 2\\-5\\1 \end{bmatrix} \begin{bmatrix} -1\\0\\-5 \end{bmatrix} \begin{bmatrix} -10\\25\\-5 \end{bmatrix}$$

The vector is not in the span of the other vectors.

$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0	-5	0	
0	1	0	0	
0	0	0	1	

5. Find the determinants

•

•

$$\begin{bmatrix} 45 & 12 & 12 \\ -48 & -13 & -12 \\ -12 & -3 & -4 \end{bmatrix}$$

$$\det A = 0$$

$$\begin{bmatrix} 6 & 38 & 46 \\ 0 & 2 & 4 \\ -1 & -8 & -11 \end{bmatrix}$$

Determinant:

$$\det A = 0$$

6. Find the inverses

•
$$\begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} -2 & -3 \\ 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -4 & -3 \\ -1 & -1 \end{bmatrix}$$
Inverse:
$$A^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -4 \end{bmatrix}$$
Are the vectors
$$\begin{bmatrix} 1 \\ -1 \\ -3 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ -7 \\ 3 \\ -6 \end{bmatrix}, \begin{bmatrix} 7 \\ -6 \\ 4 \\ -2 \end{bmatrix},$$
linearly independent?

Yes

8. Do the vectors

7.

		1 1	– – –
-2	-2	4	-8
$\lfloor -9 \rfloor$	$\lfloor -1 \rfloor$	18	$\lfloor -20 \rfloor$

span \mathbb{R}^3 ?

The set does not span all of \mathbb{R}^3 .

9. Find a basis for the null space and column space of the matrix

$$\begin{bmatrix} 0 & -9 & 9 & 36 \\ -2 & 2 & -10 & -6 \\ 5 & 4 & 16 & -21 \end{bmatrix}$$

Reduced Row Echelon Form:
$$\begin{bmatrix} 1 & 0 & 4 & -1 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Basis:
$$\begin{bmatrix} -4 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 0 \\ 1 \end{bmatrix},$$

Basis:

10. Find a basis for the span of the vectors:

$$\begin{bmatrix} 4\\0\\-2\end{bmatrix} \begin{bmatrix} 0\\-2\\-5\end{bmatrix} \begin{bmatrix} 8\\2\\1\end{bmatrix} \begin{bmatrix} -4\\3\\2\end{bmatrix}$$
$$\begin{bmatrix} 4\\0\\-2\end{bmatrix} \begin{bmatrix} 0\\-2\\-5\end{bmatrix} \begin{bmatrix} -4\\3\\2\end{bmatrix}$$

11. Find the change of basis matrix to get from B to C:

$$B = \begin{bmatrix} -5\\1 \end{bmatrix}, \qquad \begin{bmatrix} 17\\1 \end{bmatrix},$$
$$C = \begin{bmatrix} -5\\1 \end{bmatrix}, \qquad \begin{bmatrix} -2\\-4 \end{bmatrix},$$

Solution:

$$\underset{C \leftarrow B}{P} = \begin{bmatrix} 1 & -3 \\ 0 & -1 \end{bmatrix}$$

12. Let W be the subspace spanned by the vectors

$$\begin{bmatrix} 2\\0\\3\\-9 \end{bmatrix}, \begin{bmatrix} -1\\0\\-3\\12 \end{bmatrix}.$$

Find a basis for the orthogonal complement W^{\perp} of W. Solution: Let A be the matrix with columns the above vectors:

$$\begin{bmatrix} 2 & -1 \\ 0 & 0 \\ 3 & -3 \\ -9 & 12 \end{bmatrix}$$

Reduced row echelon form (RREF) of A^T :

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & -5 \end{bmatrix}$$

Basis for $W^{\perp} = (\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$:

$$\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\5\\1 \end{bmatrix}.$$

13. Find the eigenvalues and eigenvectors:

14. Diagonalize the matrix:

$$\begin{bmatrix} 7 & -12\\ 2 & -3 \end{bmatrix}$$
$$1 : \begin{bmatrix} 2\\ 1 \end{bmatrix} 3 : \begin{bmatrix} 3\\ 1 \end{bmatrix}$$
$$\begin{bmatrix} -5 & 9\\ -6 & 10 \end{bmatrix}$$
$$\begin{bmatrix} -5 & 9\\ -6 & 10 \end{bmatrix} = \begin{bmatrix} 1 & -3\\ 1 & -2 \end{bmatrix} \begin{bmatrix} 4 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 3\\ -1 & 1 \end{bmatrix}$$